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Abstract

Deep learning has allowed a simple, convenient method of road infrastructure
management to facilitate a safe, cost-effective, and efficient transportation network.
Timely repairing roads becomes challenging as manual road inspection is time-
consuming and unsafe. Recent advancements in deep learning allow the automatic



2 E No Author Given

collection and assessment of road damage data. This paper describes the YOLOv7
object detection model trained on the most recent benchmark Road Damage Dataset,
RDD 2022. Few studies examined the efficacy of the new state-of-the-art RDD 2022,
which comprised six country’s road damage, including Japan, Norway, The USA,
Czech, and China, with four common categories of damage, i.e., verticle cracks, hor-
izontal cracks, alligator cracks, and pathhole. We examined different object detec-
tion models and concluded that the object detection model YOLOvVT could be the
benchmark model for road damage detection and classification. Firstly, we added the
Convolutional Block Attention Module (CBAM) module to the network. Secondly,
the K-means++ algorithm was employed to determine a suitable anchor box for our
dataset. The proposed YOLOvT7 exceeded all previous object detection approaches on
road damage detection and classification tasks, obtaining 68.61% mAP and a 66.87%
F1 score.

Keywords: road damage detection, attention, YOLOvV7, K-means++, RDD 2022.

1.1 INTRODUCTION

Modern civilizations are heavily dependent on the transportation of people and goods
via roadways, which imposes a continuing degradation on the road surface and de-
mands a robust road maintenance system. Current methods for assessing road dam-
age fall into three categories: manual assessment, automatic assessment, and image
processing. Traditional manual assessment requires an excessive workforce, material
resources, and time. However, in the real world, the manual process is tedious due
to the length of the testing roads and the high resource demands of the task. Road
assessment using automatic detection systems is rising with the advancement of tech-
nology, for instance, using vehicles fitted with sensor equipment [I]. Since the road
condition is complex, it becomes challenging for automatic assessment tools. Image
processing techniques can incorporate high effectiveness and low cost. Road sur-
roundings are complex, so manual feature extraction is impossible with conventional
image-processing methods. Compared to usual image processing approaches, image
processing techniques using deep learning are broadly employed for road damage de-
tection because of their superior accuracy, speed, and embeddability [4]. Deep learn-
ing technology has achieved substantial progress in detecting road damage. Naddaf
et al. [5] utilized the Faster R-CNN to detect road damage and assessed the effect of
various lighting and weather conditions. Mandal et al. [6] proposed to identify road
damage using the one-stage YOLO CSPDarknet53 network. It showed another model
exploration using the road damage dataset. Despite the mentioned research’s progress
in the road damage detection problem, the substantial potential for advancement in
accuracy remains. We selected The YOLOv7 model as the approach to investigate
the Road Damage Detection and Classification problem due to its demonstrated high
accuracy and satisfactory Frame per Second (FPS) performance. The contributions
to this work can be summarized as follows:

e Evaluating current state-of-the-art object detection methods, their relevance,
and associated road damage detection and classification techniques with the
most recent benchmark dataset for road damage detection, RDD 2022.
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e The integration of the Convolutional Block Attention Module (CBAM) into
the network of the model aimed to augment the accuracy of the model.

e The K-means++ algorithm was employed to determine a suitable anchor box
for our dataset, as opposed to using the default anchor box based on the COCO
dataset.

1.2 RELATED WORK

Researchers used two distinct image types for the road damage detection study. Figure
shows a snapped photo of the top view, while the other is of the front perspec-
tive. Top-view photographs are acquired from the road’s surface, while a dashboard-
mounted camera captures front-view images.

Top-view damage photos are less complicated, and most studies focused on top-
view damage have great detection accuracy. However, the majority of these models
feature only crack damage. Most of the studies did not attempt to categorize various
road damage. Yusof et al. [7] fine-tuned CNN’s filter sizes to achieve satisfactory
accuracy of 94.5% in identifying road photographs of different cracks. Zhang et al.
[8] constructed a CrackNet model devoid of a pooling layer to recognize cracks in the
road with a 90.1% degree of accuracy. This model performed admirably, achieving
98.00% precision and 97.92% accuracy when categorizing different crack damages.
Though the models mentioned above achieve an astounding detection performance,
the application of these models is limited. Since the operation of collecting these
types of road images using dedicated cars regularly is costly.

The road damage detection model using front-view photos concentrates on devel-
oping detection and classification models using images taken by dashboard-mounted
cameras. This process of recognizing road damage is more suitable and practical in
the actual world to reduce human intervention and extensive research is also being
conducted in this area. Nonetheless, the process is more difficult because this type of
image has a variety of complicated and obscure damage. In addition to the road sur-
face, the background of these photographs includes atmosphere, geography, and other
noise that makes road damage detection more difficult. However, using these images
efficiently to detect damage would provide immense advantages in road supervision
tasks. The databases of front-view images are currently vast. Moreover, it can be
increased quickly and easily. In addition, images covering complete road areas in in-
spections and camera installation are simple and inexpensive. Due to images’ diverse
and complicated textures, studies into leveraging this image resource stay narrow
despite its numerous benefits. Deep learning-based models may effectively address
these challenging requirements. However, only a few models have their performance
evaluated using images taken by dashboard-mounted cameras. Researchers use object
detection models such as Faster RCNN, YOLO, and SSD to detect and classify road
damage. Recently, Maeda et al. [9] proposed combining a Single shot detector(SSD)
with an Inception backbone and SSD with a MobileNet backbone for detection and
categorizing eight types of road damage, reaching a 71% recall score. Jeong et al.
[10] proposed a YOLOv5x-based model, and their model achieved a 67% F1 score.



4 B No Author Given

(a) Front view image (b) Top view image

Figure 1.1: Different types of images used in road damage detection research: (a)
Front view image; (b) Top view image.

However, the detection speed could be more satisfactory. Wang et al. [11] detected
and classified road damage using a faster R-CNN- model with data augmentation
approaches and achieved a 62.5% F1 score.

1.3 METHODLOLOGY

In this section, we described brief overview of proposed Road Damage Detection and
Classification architecture.

1.3.1 Dataset description and Collection

Various intelligent equipment, such as drones and dashcams, have made the automatic
Collection of road damage data much more accessible in recent years. Especially the
dashboard-mounted camera is quicker to install and more effective than manual scan-
ning techniques in detecting road damage. Moreover, classifying road damage data
manually is a time-consuming process. We employed a benchmark dataset called Road
Damage Dataset (RDD 2022) to train the road damage detection model. Most top-
view datasets lack the class name; therefore, classification is somewhat challenging.
The road damage detection dataset (RDD 2022) is the largest front-view road dam-
age dataset ever compiled about road damage, encompassing four types of damage
in six countries. This dataset follows the preceding RDD dataset and is an expanded
version of the earlier RDD 2020 [13], and RDD 2018 [9] datasets. While the RDD
2018 dataset has 9,053 photos and the RDD 2020 dataset contains 26,336 images
from three countries, the RDD 2022 dataset [I2] comprises 47,420 images compiled
from numerous sources in six nations. It includes Japan, the United States, Norway,
the Czech Republic, India, China Motorbike, and China Drone. Figure depicts
the distributions of damage types, i.e., four main damage types, among the six coun-
tries. From a present standpoint, this cutting-edge dataset is the most practical and
effective for road damage detection and classification.
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Figure 1.2: Damage category distribution in the current benchmark state-of-the-mark
dataset, RDD 2022.

1.3.2 Data Processing

The RDD 2022 dataset has 36,000 photos with an annotation file, most of which
have unique labels for a single country. Therefore, we manually deleted these unique
classes and retained the four common classes in our research. We included four types
of damage: D00: longitudinal cracks, D10: transverse fractures, D20: alligator cracks,
and D40: potholes. Figure depicts an example of these four classes. Additionally,
there are a large number of photos that do not have any annotation. These images
are pointless for the road damage detection model, and hence we eliminated these
images. A close inspection of the RDD 2022 dataset provides us with a few insights for
selecting images efficiently. Countries such as Norway and Japan had various image
sizes. For example, the resolution of Norway photos 3072 x 3720 is incompatible
with our GPU configuration. Moreover, we omitted China-Drone in our proposed
work because it needed to be obtained from a front-mounted vehicle image. We
manually scale each image to 640 x 640 to train our YOLOvV7 model. The greater
efficiency of YOLO with a 640 x 640 image can be linked to the algorithm’s built-
in design. The YOLO algorithm partitions an image with dimensions of 640 x 640
into a grid consisting of 20 x 20 cells, where each cell measures 32 x 32 pixels. This
particular grid dimension facilitates an optimal equilibrium in detecting objects of
varying sizes. If the image size is smaller, there will be fewer cells in the grid, making
it easier to detect small objects. Conversely, if the image’s dimensions are massive,
the grid will contain a more significant number of cells, thereby rendering the image
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(b) (c) D20:Alligator (d) D40:Pathhole

DO00:longitudinal D10:Transverse Crack
Crack Crack

Figure 1.3: Different kinds of road damages used in the proposed work.

processing computationally tricky. The image size of 640 x 640 has been determined
to be effective in facilitating the efficient and precise detection of objects of diverse
sizes within an image by YOLO [I4]. Finally, we partitioned the dataset into three
distinct subsets, namely training, validation, and testing, in a ratio of 70:20:10. The
training set comprised 13039 images, the validation set contained 3619 images, and
the testing set was composed of 1842 images. The testing set is sufficient for measuring
the model’s performance on unseen data. In addition, this research requires a large
validation set because the dataset needs to be more balanced, with fewer samples in
some classes than in others.
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Figure 1.4: The statistical results of the RDD 2022 dataset

Figure depicts a graph where the vertical axis represents the number of
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labels, while the horizontal axis represents the names of the labels. The distribution
of labels is illustrated in figure [[.4p. The abscissa, denoted as x, represents the ratio
between the label center’s abscissa and the image’s width. Similarly, the coordinate y
represents the ratio between the label center’s abscissa and the image’s height. Figure
illustrates the abscissa width as the ratio between the label and image widths.
At the same time, the coordinate height represents the ratio between the label height
and the image height.

1.3.3 Architecture Description

The Yolov7 network structure comprises four distinct modules: the input terminal,
backbone, neck, and head, alongside several other components like CBS (convolution,
batch normalization, and Sigmoid Linear Unit layer for feature extraction), Efficient
Layer Aggregation Networks (ELAN), MP (Composition of max pool and CBS layer),
and Spatial Pyramid Pooling layer with CSP net (SPPCSPC). Figure represents
the whole Yolov7 architecture. The YOLOvVT network initiated image pre-processing,
then resizing the image to 640 x 640 x 3 before feeding it into the backbone network.

The CBS module, ELAN (efficient layer aggregation networks) module, and MP
module sequentially downsized the feature map by a factor of 1/2 in length and width
dimensions while doubling the number of output channels relative to the number of
input channels. In addition, the CBS composite module executed a sequence of convo-
lution, batch normalization, and activation function operations on the input feature
map. The SiLU activation function was employed for this purpose. The Equation of
the SiLU activation function is given in equation

x
SiLU(z) = [T o= (1.1)

MP module comprises two components: the CBS module and the maximum pool-
ing. In addition, the ELAN and ELANW modules are the primary computational
components of YOLOv7, assigned with extracting features. The SPPCSPC module
can acquire object information at multiple scales while maintaining the feature map
size. The Repconv structure involves re-parameterization, extending the training pe-
riod and enhancing the inference outcome [23].

The ELAN module is utilized to expand, shuffle and merge cardinality to enhance
the model’s learning capacity while preserving the initial gradient path. The ELAN
architecture consisted of various convolutions. The utilization of group convolution
is employed to expand the computational block’s channel and cardinality within its
architecture. In addition, various groups of computational units are directed towards
acquiring a more comprehensive range of features. If the ELAN/W module contains
two N connections, it is called ELANW. Otherwise, it is defined as ELAN. The main
feature extraction task in YOLOv7 is accomplished using four ELAN modules. After
adjusting the number of channels, three ELAN modules are directed towards the
Neck region. The Neck component of YOLOv7 utilizes a feature pyramid structure,
incorporating one SPPCSPC module and four ELANW modules to perform feature
extraction. The three ELANW modules on the right side are directly connected to
the Head part. Ultimately, the network executes feature output via three detection
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Figure 1.5: A brief overview of YOLOvV7 Architecture.

heads. Consequently, the output comprises three distinct dimensions of feature maps
measuring 20x 20, 40x40, and 80x80. After the convolution process, the output fea-
ture maps are transformed into a one-dimensional vector called the fully connected
layer. This one-dimensional vector can be used to predict the targets in the image.

The YOLOvVT model’s loss function comprises three parts: namely, the confidence
loss (Lop;), localization loss (Lpes), and classification loss (Lgs). The aggregate loss
is computed as the summation of three distinct losses, and each is assigned a specific
weight. Equation |1.2| represents the full loss function.

LOSS =a x Lobj 4+ b X Les + ¢ X Lpox (1.2)

The weighting factors denoted by a, b, and ¢ correspond to the three partial losses.
Binary cross entropy loss (BCE) is mainly used in classification and confidence loss,
while CloU (Complete Intersection Over Union) loss is commonly used for localization
loss.

Equation defines the binary cross-entropy loss. In the given Equation, y; de-
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notes the actual label of the sample in the real-world scenario, whereas p(y) signifies
the anticipated likelihood of the data point being affirmative, taking into account all
N data points. The augmented form of the localization loss is described in Equation

T4

N
Lyl0) =~ D i 1oa(p(yi)) + (1 — 92) - Tow(1 — p() (1.3
Mﬂhm—l—CEWLm—l—bUmw+p%?2+MJ (1.4)
mwumzﬁgz (1.5)
. 4 1 { Yw 1l 2
V=3 (tan (gh> — tan (lh)> (1.6)
a= y (1.7)

(1—ToU(l, g)) + v

The symbols [ and ¢ in equation [1.4] represent the ground truth and, prediction
box, consequently. The symbol p denotes the Euclidean distance. The parameter ¢
represents the diagonal length of the smallest possible closed box that can cover both
boxes above. The intersection degree of two boxes is represented by equation of
IoU. v in equation denotes the aspect ratio’s consistency. Finally, the symbol «,
denoted in equation represents the trade-off parameter.

1.3.3.1 Refining Detection through Attention Module

In the context of deep learning and neural networks, attention refers to a sophis-
ticated mechanism inspired by the human cognitive process. It involves selectively
focusing on specific elements or regions of input data while allocating varying de-
grees of importance to different parts based on their relevance to the task.

We comprehensively analyzed four attention modules to fulfill our objective by
incorporating attention in several network positions. Our findings show that adding
an attention module to the model’s backbone increases its weight since each ELAN
block contains many parameters. The YOLOvVT7 network structure was enhanced by
including the CBAM attention mechanism [23], as depicted in ﬁgure The strategic
positioning of this element contributes to improved network performance by allowing
for targeted attention to the most relevant characteristics. citewu2023lightweight.

CBAM, also known as the Convolutional Block Attention Module, is an attention-
driven mechanism meticulously crafted to augment the representational prowess of
CNN. A discerning eye selectively accentuates salient features across spatial and
channel dimensions, empowering the network to extract and encapsulate pivotal in-
formation more effectively. By strategically highlighting the most significant aspects
within the input data, CBAM drives CNN’s capacity to determine complex patterns
and gain deeper insights. The Channel Attention Module in equation of CBAM
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Figure 1.6: A overview of Attention Module Architecture.

is designed to capture the intricate interdependencies among channels within feature
maps meticulously. By selectively assigning weights to different channels, the module
enables the network to focus more on significant channels while downplaying the in-
fluence of less informative ones. On the other hand, the Spatial Attention Module in
equation [I.9 within CBAM is engineered to capture the complex relationships among
various spatial locations within feature maps. This module empowers the network to
selectively amplify or suppress specific spatial locations based on their relevance.

Thus, the Channel and Spatial Attention Module of CBAM in equation form
a powerful attention-based mechanism that enhances the representation power of
CNN. By adaptively adjusting channel weights and selectively amplifying or sup-
pressing spatial locations, CBAM allows the network to selectively focus on crucial
information and improve its ability to extract meaningful features from complex data.

we=0(Cy - F (1.8)
omegas = o(GP(F) (1.9)
Fepam = F' - we - ws (110)

The symbols C, and F' in equation 1.8 weight matrix of the channel attention module
and input feature map respectively. In equation GP(F) global average pooling of
F.

1.3.3.2 Refined Anchor Generation

The anchor box’s initial dimensions in YOLOvVT are determined by employing the K-
means algorithm [24] for edge clustering on the MS COCO dataset [25]. Nevertheless,
it is worth noting that the MS COCO dataset primarily consists of objects classified
as large or medium-sized. In contrast, this study’s Road Damage Detection dataset
includes smaller and medium-sized targets, which differ from the objects present in the
COCO dataset. Therefore, it is determined that the initial dimensions of the anchor
box in YOLOvVT are not appropriate for the samples in the RDD-2022 dataset. To
tackle this matter, the K-means++ clustering algorithm was utilized as a substitute
for the K-means algorithm to readjust the dimensions of the anchor box for the
samples contained within the RDD 2022 dataset. K-means++ is a modified version of
the K-means clustering algorithm that aims to overcome specific limitations inherent
in the original K-means algorithm [26]. The limits encompass random initialization
of centroids, slower convergence speed, and diminished accuracy.
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Figure 1.7: Addition of CBAM Attention in YOLOv7 Network Architecture.

To effectively align the anchor box dimensions in YOLOv7 with the characteristics
of the RDD 2022 dataset samples, it became evident that the initial measurements
needed to be better suited. By embracing the inherent superiority of K-means++, we
tackled an iterative process, meticulously recalibrating the anchor box dimensions
to seamlessly harmonize with the intricacies exhibited by the samples within the
RDD-2022 dataset. K-means++ algorithm can be summarized as follows:

1. Randomly select the first centroid from the dataset.

2. For each remaining centroid (2 to K):
a. Calculate the minimum squared distance (D-i) from each data point to the
nearest centroid, considering all existing centroids up to (i-1).
b. Select the next centroid by sampling a data point with a probability directly
proportional to its corresponding minimum squared distance (D).

3. Return the set of K centroids.

1.3.4 Model Training

We trained the RDD 2022 dataset with a few object detection models, such as one-
stage object detectors like YOLO and two-stage object detectors like Faster RCNN.
We have trained a few recent versions of the YOLO, the YOLOv5, YOLOv6 and the
YOLOvVT7. YOLOvT7 has several distinct versions, including YOLOvTtiny, YOLOvV?7,
YOLOvTx, YOLOvV7-W6, YOLOvV7EG,YOLOv7DG6, and YOLOV7EGE. YOLOv7Tiny
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is the smallest model, whereas YOLOVTEGE is the largest. We proposed YOLOvVT as
our model as it outperforms all other object detection models.

We utilized YOLOvT’s default image enhancement settings, contributing to
greater accuracy. The hyper-parameters can be tuned during YOLO model train-
ing. Table describes the YOLOv7 image augmentation settings during a training
epoch. We trained all models using 16 GB Tesla T4 GPU and 32 GB RAM.

Table 1.1: Image augmentation parameter of the YOLOv7 architecture.

Augmentation parameter Value

Image hsv - hue 0.01
hsv saturation 0.70
hsv value 0.40
Rotation degree 0.00
Translation 0.10
scaling 0.50
Flip left right 0.50
Mosaic Augmentation 1.00

1.4 EVALUATION PARAMETER

Precision, recall rate, F1 score, mean Average Precision (mAP), the number of param-
eters, and GFlops(One billion Floating-Point Operations per second) are employed
as evaluation metrics in this research. The model precision score measures the pro-
portion of positively predicted labels that were successfully predicted. The equation
of the precision is presented in equation [1.11

TP
Precision Score = FP+TP) (1.11)

In contrast, Recall represents the model’s capability to predict positive results
based on actual positive results accurately. True positive(TP), False positive(FP),
and False negative(FN) are utilized to calculate precision and recall. The Recall
equation is provided in equation [1.12]

TP
Recall Score = (FN+TP) (1.12)
The F1 score represents the model’s performance based on the Recall and preci-
sion scores. The F1 score is an option for Performance measures that give Precision
and Recall equal weight while evaluating the performance of a machine learning
model. This can be stated technically as a harmonic mean of the precision and recall
scores. The F1 score equation is given in equation [1.13

2 x Precision Score x Recall Score
F1s = 1.13
core (Precision Score + Recall Score) (1.13)
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Mean Average Precision(mAP) is a metric employed to assess object detection
models. First, the accuracy and recall values for each detection in the class are
computed for a range of confidence threshold values. The area under that class’s
precision-recall curve (AUC) is then used to determine the average Precision. After
calculating the AP score for each class, we construct the mAP score by averaging
these scores. The mAP score is a valuable aggregate metric that comprehensively
assesses the model’s detection performance across all classes in the data set. The
equation of mAP is given in equation

1 k=n
mAP = — AP, 1.14
- ;1 (1.14)

where APx = The AP of class & and n = The number of classes.

GFLOPs are utilized to evaluate the model or algorithm’s efficiency. In general,
the lower the GFLOPs, the less computational power it requires to depict the model,
the lesser the performance requirements for hardware, and the simpler it is to im-
plement in low-end devices. Another crucial indicator for evaluating a model’s com-
plexity and computational demands is the number of parameters. A more significant
number of parameters indicates a model’s complexity, which may involve more com-
putational resources for training and deployment. Therefore, while evaluating object
detection models, examining the number of parameters and the model’s effectiveness
on relevant metrics such as mAP, Precision, and Recall is essential.

1.5 EXPERIMENTAL RESULT

In this section, we evaluate the effectiveness of our proposed method through a series
of experiments.

1.5.1  Comparison among different object detectors

We trained nine different models to validate the efficacy of our proposed suggested
YOLOv7 model. We conducted experiments with five distinct models to choose the
best model, including three of the most well-known one-stage detectors, YOLOvV5,
YOLOv6, and YOLOv7. In addition, we implemented a two-stage detector model
based on faster R-CNN with two different backbones. Table displays the differ-
ent object detection model’s performance on the RDD 2022 dataset. The YOLOv7-
tiny version achieves a satisfactory F1 score of 63.68% with less computing. It ex-
hibits the highest frames per second (FPS), while the Faster RCNN with Resnet 101
demonstrates the lowest FPS. The YOLOv5m attains 68.45% mAP while showing a
44FPS. YOLOv5-large and YOLOv6-large version shows more excellent performance
of 70.49% and 69.13% mAP; however, the FPS is low. we assessed various YOLOv7
model versions, including YOLOv7-tiny, YOLOv7 ;YOLOv7-X, and YOLOv7-W6.
We omitted YOLOv7EG, YOLOvV7EGE, and YOLOv7D6 from our experiment since
they require many parameters and have greater GFLOPS, which are inappropriate
for an embedded system with a dashboard-mounted camera. Ensuring a high frame
rate (FPS) is imperative for this particular application while maintaining a notable
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Table 1.2: Comparison of the YOLOvV7 architecture with the other methods on detection results.

Model Precision Recall F1 Score mAPO0.5(%) FPS(G)
Faster R-CNN ResNet-50 69.78 60.25 64.66 66.14 18
Faster R-CNN ResNet-101 70.16 61.26 65.40 68.91 13
YOLOv5-medium 69.55 64.23 66.78 68.45 44
YOLO vb5-large 72.34 63.84 67.82 70.49 36
YOLO vé6-large 71.26 62.56 66.62 69.13 39
YOLOv7-tiny 66.51 61.14 63.68 65.67 78
YOLOv7 70.49 62.87 66.48 67.90 53
YOLOv7-X 71.83 62.92 67.11 69.41 33
YOLO v7-W6 72.55 64.95 68.53 70.81 29

accuracy level. Yolov7 depicts a good trade-off between speed and performance, con-
taining 67.90% mAP and 53 FPS. That’s why we selected YOLov7 for our task and
moved forward with further experiments.

1.5.2 Experiment with Different Attention Mechanisms

The study demonstrated that the SimAM(A Simple, Parameter-Free Attention Mod-
ule) requires fewer parameters and GFlops than the other three attention modules,
with 33.17 million parameters. Table illustrates the experimental data. The uti-
lization of the Squeeze and Excitation module(SE) resulted in a notable improvement
of 33.47% in mean average precision (mAP) and 66.53% in F1 score while maintain-
ing a parameter count of 33.47 million. The SimAM model achieves a precision rate
of 71.56% while exhibiting a lower recall rate of 62.14%, despite having a similar
parameter count compared to the Yolov7 model. The Coordinate Attention (CA)
model achieves a higher mean average precision (mAP) of 68.13% compared to the
SimAM model, despite the CA model only having an increment of 0.4 million param-
eters. The Convolutional Block Attention Module (CBAM) yielded a higher result,
yielding a mean average precision (mAP) of 68.49% with 33.83 million parameters.
Hence, the CBAM attention module is the most suitable option based on its superior
performance to alternative attention modules.

Table 1.3: Experimental result of different attention mechanisms with YOLOv7 ar-
chitecture

Attention Precision(%) Recall(%) F1 Score(%) mAP@0.5(%) No. of GFlops
Mechanism Params.(M)

SE 70.39 63.08 66.53 67.98 33.47 39.63
SimAM 71.56 62.14 66.51 68.24 33.17 39.35
CA 70.67 63.07 66.65 68.13 33.58 39.74
CBAM 70.85 63.23 66.82 68.49 33.83 40.36

1.5.3 Ablation Experiment

To evaluate the dependability and significance of individual enhanced modules within
the model, we use YOLOvV7 as a benchmark and execute ablation experiments while
gradually integrating improved modules. This investigation’s evaluation criteria in-
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Figure 1.8: Comparison of mAP0.5 between YOLOv7-baseline and our proposed
YOLOv7

clude Precision, Recall, F1 Score, mAP, Number of parameters, and frames per second
(FPS). The results of the experiment are shown in Table The default implemen-
tation of YOLOvT7 has a mAP of 67.93% and 33.14 parameters. Including CBAM
in the architecture has increased mAP by 0.82 %. Moreover, there was an increase
of 0.7 million parameters and a decrease of 2 frames per second. Incorporating an
adaptive anchor box using the K-means++ algorithm increased mAP by 0.17% and
precision by 0.64%. The 110,000 reduction in parameters increased by 7 FPS. Figure
demonstrates our proposed model’s detection results. Figure[L.8|shows the Com-
parison of mAP@Q.5 performance between the YOLOv7-baseline and our proposed
YOLOvT7.Figure depicts the precision-recall curve.

Table 1.4: Comparison of performance among different models

Model Precision Recall F1 Score mAP@O0.5 No. of FPS
(%) (%) (%) (%) Params.(M)

YOLOv7 Baseline 70.59 62.89 66.49 67.93 33.14 53

YOLOv7 Baseline 70.85 63.23 66.82 68.49 33.83 51

+ CBAM

YOLOv7 Base- 71.31 62.96 66.87 68.61 33.45 56

line+ CBAM+K-
means++




16 W No Author Given

10 Precision-Recall Curve

—— D00 0.713

D10 0.480
—— D20 0.798
—— D40 0.752

0.8 = all classes 0.686 MAP@0.5

0.6

Precision

0.4

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 1.9: Precision-Recall Curve of YOLOvVT.

Table 1.5: Results of each road damage classes of our proposed YOLOv7 model

Class  Precision(%) Recall(%) F1 Score(%) mAP®@O0.5(%) mAP@O.5-
0.95(%)
Doo 69.82 68.12 68.94 71.30 35.37
D10 58.95 43.81 50.26 48.33 19.8
D20 77.13 77.26 77.19 79.62 45.57
D40 60.48 76.51 67.55 75.51 39.67

1.5.4 Comparison of different classes of the research

Table[L.5]shows the performance of each class. We observed that the D20 road damage
category showed the highest performance of 79.62% mAP. The existence of D10 in
the dataset is comparatively lower. That is why we got that impact on achieving
the lowest score among all other classes, comprised of 48.33% mAP. The D40 is one
of the complicated damage types that are also immense in number in the dataset,
and we obtained the second-highest percentage of mAP among all other damage at
75.21% mAP. In addition, we received an mAP score of 71.30% in the D00 class,
which ranked third among all other classes.

Table 1.6: Comparison with existing methods regarding road damage detection and classification.

Model F1 Score (%)
Mask R-CNN with RDD 2018 [I8] 52.80
Faster R-CNN with Resnet-101 backbones with RDD 2020 [20] 54.26
Ensemble(YOLO-v4+Faster-RCNN) with RDD 2020 [21] 57.07
YOLOv5x with RDD 2020 [22] 57.10
YOLOV7 with RDD 2022 [19] 66.30

Our proposed modified YOLOv7 with RDD 2022 66.87
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(a) Input Image (b) Ground Truth (c) Detection Output

Figure 1.10: Demonstration of the YOLO7 model detection results: (a) Input Image;
(b) Ground Truth; (c) Detection Output.

1.5.5 Comparison of existing approaches for road damage detection and classifica-
tion

Table shows the drastic performance gap between our proposed YOLOv7 and
other object detection methods on the RDD 2018, RDD 2020, and RDD 2022
datasets. Singh et al. [I§] used Mask RCNN with the RDD 2018 dataset to ac-
quire an F1 score of 52.3%. Numerous studies utilized RDD 2020, the successor to
RDD 2018, and produced a higher F1 score than previous research [20, 2I]. Using
the RDD 2020 dataset and other object detection algorithms, the researcher discov-
ered that the YOLO-based approach outperformed most of the other studies [22].
We outperformed all previous studies that used RDD 2018 and RDD 2020 datasets
by a significant margin. The only literature we came across with RDD 2022 had an
average F1 score of 66.46% [19]. We scored 0.85% higher than their average F1 score.
The proposed YOLOvVT model can accurately identify road damages with satisfactory
confidence.

Various object detection models were tested, and it was determined that YOLOv7
outperformed most other models with an F1 score of 68.53. Subsequently, we con-
ducted a series of experiments utilizing various iterations of YOLOvT7 and determined
that the proposed YOLOv7 exhibits superior performance to both mean average pre-
cision (mAP) and F1 score with a good FPS.
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1.6 CONCLUSION

Rapid and precise road damage identification can greatly benefit the road mainte-
nance industry and contribute significantly to the economy. Applying deep learning
techniques becomes vital since it drastically simplifies road inspection and provides a
comprehensive view of the road’s overall condition. Our proposed work uses multiple
state-of-the-art object detection models to analyze the most recent benchmark road
damage dataset, RDD 2022. The CBAM attention mechanism was employed in the
YOLOvVT network. Simultaneously, the K-means++ algorithm is utilized to ascertain
our model’s most suitable anchor box. Though the mainstream approach to road
damage detection and classification is object detection, doing instance segmentation
is possible and better. In the future, we will develop an instance segmentation model
to segment and classify front-view images of road damage. This method can signif-
icantly improve the task’s accuracy and precisely determine the damage’s location.
Due to the unavailability of the instance segmentation-based dataset for road dam-
age, this category still needs to be examined for better results. Creating segmentation
for front-view images of these types of damage is complex and laborious.
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